On selfadjoint extensions of semigroups of partial isometries

dc.contributor.authorBernik, Janez
dc.contributor.authorMarcoux, Laurent W.
dc.contributor.authorPopov, Alexey I.
dc.contributor.authorRadjavi, Heydar
dc.date.accessioned2020-04-01T21:01:06Z
dc.date.available2020-04-01T21:01:06Z
dc.date.issued2016
dc.descriptionFirst published in Transactions of the American Mathematical Society in volume 368, 2016, published by the American Mathematical Society. https://doi.org/10.1090/tran/6619en
dc.description.abstractLet S be a semigroup of partial isometries acting on a complex, infinite- dimensional, separable Hilbert space. In this paper we seek criteria which will guarantee that the selfadjoint semigroup T generated by S consists of partial isometries as well. Amongst other things, we show that this is the case when the set Q(S) of final projections of elements of S generates an abelian von Neumann algebra of uniform finite multiplicity.en
dc.description.sponsorshipResearch supported in part by ARRS (Slovenia). Research supported in part by NSERC (Canada).en
dc.identifier.urihttps://doi.org/10.1090/tran/6619
dc.identifier.urihttp://hdl.handle.net/10012/15729
dc.language.isoenen
dc.publisherAmerican Mathematical Societyen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectpartial isometryen
dc.subjectsemigroupen
dc.subjectself-adjointen
dc.subjectabelian von Neumann algebraen
dc.subjectmultiplicityen
dc.titleOn selfadjoint extensions of semigroups of partial isometriesen
dc.typeArticleen
dcterms.bibliographicCitationTrans. Amer. Math. Soc. 368 (2016), 7681-7702en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.scholarLevelGraduateen
uws.scholarLevelStaffen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BMPR-20141019.pdf
Size:
531.1 KB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: