Control of the Landau–Lifshitz equation

dc.contributor.authorChow, Amenda
dc.contributor.authorMorris, Kirsten
dc.date.accessioned2017-08-25T18:20:47Z
dc.date.available2017-08-25T18:20:47Z
dc.date.issued2016-05
dc.descriptionThe final publication is available at Elsevier via https://doi.org/10.1016/j.automatica.2016.01.044 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractThe Landau–Lifshitz equation describes the dynamics of magnetization inside a ferromagnet. This equation is nonlinear and has an infinite number of stable equilibria. It is desirable to control the system from one equilibrium to another. A control that moves the system from an arbitrary initial state, including an equilibrium point, to a specified equilibrium is presented. It is proven that the second point is an asymptotically stable equilibrium of the controlled system. The results are illustrated with some simulations.en
dc.identifier.urihttps://doi.org/10.1016/j.automatica.2016.01.044
dc.identifier.urihttp://hdl.handle.net/10012/12219
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAsymptotic stabilityen
dc.subjectEquilibriumen
dc.subjectLyapunov functionen
dc.subjectNonlinear control systemsen
dc.subjectPartial differential equationsen
dc.titleControl of the Landau–Lifshitz equationen
dc.typeArticleen
dcterms.bibliographicCitationChow, A., & Morris, K. A. (2016). Control of the Landau–Lifshitz equation. Automatica, 67, 200–204. https://doi.org/10.1016/j.automatica.2016.01.044en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Applied Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChowMorris-preprint.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Post-print

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: