UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Nano-Crystalline &Amorphous Silicon PhotoTransistor Performance Analysis

dc.contributor.authorZhang, Yanfeng
dc.date.accessioned2009-08-24T15:50:36Z
dc.date.available2009-08-24T15:50:36Z
dc.date.issued2009-08-24T15:50:36Z
dc.date.submitted2009
dc.description.abstractIn this thesis, we compared electrical performance and stability of a novel nanocrystalline Si (nc-Si) thin film phototransistor (TFT) phototransistor and a regular amorphous silicon (a-Si:H) TFT phototransistor for large area imaging applications. The electrical performance parameters of nc-Si TFT phototransistor were extracted from the electrical (current-voltage) testing in dark and under illumination. The field-effect mobility is found to be around 1.2 cm2V-1s-1, the threshold voltage around 3.9V and the sub-threshold voltage slope around 0.47V/Dec. Optical properties of nc-Si TFT phototransistor have been evaluated under the green light illumination in the range of 1014 – 1017 lum, and the photocurrent gain and the external quantum efficiency were extracted from the experimental results. By comparing the results with those for a-Si:H TFTs measured under the same conditions, we found that nc-Si TFT has higher photo current gain under low illumination intensity, 5 ×1014 to 7 ×1015 lum. This thesis shows the relations bewteen the photo current gain, the external quantum efficiency, TFT drain and TFT gate bias; the photo current gain and the external quantum efficiency can be controlled by the Vds and the Vgs.en
dc.identifier.urihttp://hdl.handle.net/10012/4586
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectnc-Sien
dc.subjectphototransistoren
dc.subject.programElectrical and Computer Engineeringen
dc.titleNano-Crystalline &Amorphous Silicon PhotoTransistor Performance Analysisen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dara_Thesis_20090822-1.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
259 B
Format:
Item-specific license agreed upon to submission
Description: