Exploiting the Computational Power of Ternary Content Addressable Memory

dc.contributor.authorTirdad, Kamran
dc.date.accessioned2011-09-30T15:17:09Z
dc.date.available2011-09-30T15:17:09Z
dc.date.issued2011-09-30T15:17:09Z
dc.date.submitted2011
dc.description.abstractTernary Content Addressable Memory or in short TCAM is a special type of memory that can execute a certain set of operations in parallel on all of its words. Because of power consumption and relatively small storage capacity, it has only been used in special environments. Over the past few years its cost has been reduced and its storage capacity has increased signifi cantly and these exponential trends are continuing. Hence it can be used in more general environments for larger problems. In this research we study how to exploit its computational power in order to speed up fundamental problems and needless to say that we barely scratched the surface. The main problems that has been addressed in our research are namely Boolean matrix multiplication, approximate subset queries using bloom filters, Fixed universe priority queues and network flow classi cation. For Boolean matrix multiplication our simple algorithm has a run time of O (d(N^2)/w) where N is the size of the square matrices, w is the number of bits in each word of TCAM and d is the maximum number of ones in a row of one of the matrices. For the Fixed universe priority queue problems we propose two data structures one with constant time complexity and space of O((1/ε)n(U^ε)) and the other one in linear space and amortized time complexity of O((lg lg U)/(lg lg lg U)) which beats the best possible data structure in the RAM model namely Y-fast trees. Considering each word of TCAM as a bloom filter, we modify the hash functions of the bloom filter and propose a data structure which can use the information capacity of each word of TCAM more efi ciently by using the co-occurrence probability of possible members. And finally in the last chapter we propose a novel technique for network flow classi fication using TCAM.en
dc.identifier.urihttp://hdl.handle.net/10012/6315
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectTCAMen
dc.subjectComputational Complexityen
dc.subject.programComputer Scienceen
dc.titleExploiting the Computational Power of Ternary Content Addressable Memoryen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentSchool of Computer Scienceen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tirdad_Kamran.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
249 B
Format:
Item-specific license agreed upon to submission
Description: