UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

On 2-crossing-critical graphs with a V8-minor

Loading...
Thumbnail Image

Date

2014-05-22

Authors

Arroyo Guevara, Alan Marcelo

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of a graph. A graph $G$ is $k$-crossing-critical if it has crossing number at least $k$, and any subgraph of $G$ has crossing number less than $k$. A consequence of Kuratowski's theorem is that 1-critical graphs are subdivisions of $K_{3,3}$ and $K_{5}$. The graph $V_{2n}$ is a $2n$-cycle with $n$ diameters. Bokal, Oporowski, Richter and Salazar found in \cite{bigpaper} all the critical graphs except the ones that contain a $V_{8}$ minor and no $V_{10}$ minor. We show that a 4-connected graph $G$ has crossing number at least 2 if and only if for each pair of disjoint edges there are two disjoint cycles containing them. Using a generalization of this result we found limitations for the 2-crossing-critical graphs remaining to classify. We showed that peripherally 4-connected 2-crossing-critical graphs have at most 4001 vertices. Furthermore, most 3-connected 2-crossing-critical graphs are obtainable by small modifications of the peripherally 4-connected ones.

Description

Keywords

graph theory, crossing numbers, disjoint paths, crossing critical

LC Subject Headings

Citation