UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Nanostructured TM-Boron Based Hydrides for Solid State Hydrogen Storage (TM-transition metal)

dc.contributor.authorShirani Bidabadi, Amirreza
dc.date.accessioned2016-11-30T19:36:38Z
dc.date.available2016-11-30T19:36:38Z
dc.date.issued2016-11-30
dc.date.submitted2016-11-15
dc.description.abstractSeveral complex borohydride systems were investigated in this work as potential candidates for on-demand hydrogen generation and/or storage. All selected systems were synthesized by ball milling (BM) in expectation of inducing mechano-chemical activation synthesis (MCAS). The (LiBH4-FeCl2) system with the molar ratio of 2:1 showed rapid hydrogen generation (mechanical dehydrogenation) at room temperature. Rapid mechanical dehydrogenation was also observed during milling of LiBH4 with TiCl2 and TiCl3 with the molar ratio of 2:1 and 3:1, respectively. The Li-B-Fe/Ti-H systems are quite remarkable since their mechanical dehydrogenation rate at ambient temperature is much higher than their thermal dehydrogenation rate within the 100-250°C range. Mechanical dehydrogenation of the (3LiBH4-TiF3) system was rather slow without and with additives such as ultrafine filamentary Ni and graphene. Only minimal mechanical dehydrogenation was observed for the (LiBH4-MnCl2) system. Some additives such as ultrafine filamentary Ni and LiNH2 accelerated the mechanical dehydrogenation rate of this system. The Mn(BH4)2 and LiCl, which were identified as the MCAS products after ball milling of (LiBH4-MnCl2), are both nanocrystalline after synthesis. The Mn(BH4)2-LiCl nanocomposite was capable of desorbing up to ~ 4.5 wt.% at 100°C during isothermal dehydrogenation and was very stable and released no H2 during long-term storage at room temperature for over 120 days. Mass spectrometry (MS) of the ball milled (LiBH4-MnCl2) showed the principal peaks of H2 accompanied by a miniscule peak of B2H6 (diborane gas). Adding 5 wt.% of LiNH2, graphene and Ni to the powder mixture during mechano-chemical synthesis increased the H2/B2H6 peak ratio, consequently minimizing the release of B2H6 during isothermal dehydrogenation. LiNH2 and Ni suppressed the release of B2H6 to a larger extent than graphene. Isothermal desorption of ball milled (3LiBH4-TiF3) occurred at a very low temperature of 60°C resulting in desorption of 4.52 wt.% H2 within 93 h. Interestingly, increasing milling energy from QTR=72.8 kJ/g (1 h BM) to QTR=364 kJ/g (5 h BM) led to a nearly complete disappearance of the MS B2H6 peak.en
dc.identifier.urihttp://hdl.handle.net/10012/11087
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectBall millingen
dc.subjectMechano-chemical activation synthesis
dc.subjectBorohydride
dc.subjectDehydrogenation behavior
dc.subjectElectron microscopy
dc.titleNanostructured TM-Boron Based Hydrides for Solid State Hydrogen Storage (TM-transition metal)en
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorVarin, Robert. A
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shirani_Bidabadi_Amirreza.pdf
Size:
8.29 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: