Bounds on 10th moments of (x, x^3) for ellipsephic sets

dc.contributor.authorAnderson, Theresa C.
dc.contributor.authorHu, Bingyang
dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorTalmage, Alan
dc.date.accessioned2023-10-03T15:19:16Z
dc.date.available2023-10-03T15:19:16Z
dc.date.issued2023
dc.description.abstractLet A be an ellipsephic set which satis es digital restrictions in a given base. Using the method developed by Hughes and Wooley, we bound the number of integer solutions to the system of equations X2 i=1 􀀀 x3i 􀀀 y3 i = X5 i=3 􀀀 x3i 􀀀 y3 i X2 i=1 (xi 􀀀 yi) = X5 i=3 (xi 􀀀 yi); with x; y 2 A5. The fact that ellipsephic sets with small digit sumsets have fewer solutions of linear equations allows us to improve the general bounds obtained by Hughes andWooley and also the corresponding e cient congruencing estimates. We also generalize our result from the curve (x; x3) to (x; (x)), where is a polynomial with integer coe cients and deg( ) 3.en
dc.description.sponsorshipNSF DMS Grant || NSERC Discovery Grant.en
dc.identifier.urihttp://hdl.handle.net/10012/20011
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectmean value estimatesen
dc.subjectellipsephic setsen
dc.subjectKdV-like equationsen
dc.titleBounds on 10th moments of (x, x^3) for ellipsephic setsen
dc.typePreprinten
dcterms.bibliographicCitationAnderson, T.C., Hu, B., Liu, Y.-R. & Talmage, A. (2023). Bounds on 10th moments of (x, x^3) for ellipsephic sets. University of Waterloo. [Preprint].en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023-10th-moment.pdf
Size:
349.85 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: