Analysis of Plasmons Sustained on the Surface of Graphene

dc.contributor.authorLyon, Keenan
dc.date.accessioned2014-08-11T19:01:20Z
dc.date.available2014-08-11T19:01:20Z
dc.date.issued2014-08-11
dc.date.submitted2014
dc.description.abstractThis thesis is broken into two parts, both dealing with the role of two-dimensional graphene in electronic and optical applications. The first section develops a phenomenological relationship for the polarizability of the graphene sheet using a hybrid semi-classical and QFT-derived (Quantum Field Theory) model for different energy regimes. Fits are made and our results are compared to data from two distinct experimental setups. The effects of contamination and rippling of the sheet are considered. The second section shows a phenomenological model for the rough surfaces of graphene and its underlying substrate for a sheet grown on a conducting material. Three different perturbative mathematical models are then explored to justify the shift in the plasmon frequency and the energy loss dispersion due to roughness, using input from experimental roughness data. The models are compared and corrected to include physical effects like crumpling.en
dc.identifier.urihttp://hdl.handle.net/10012/8620
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgrapheneen
dc.subjectplasmonsen
dc.subjectplasmonicsen
dc.subjectroughnessen
dc.subjectspectroscopyen
dc.subject.programApplied Mathematicsen
dc.titleAnalysis of Plasmons Sustained on the Surface of Grapheneen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lyon_Keenan.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.67 KB
Format:
Item-specific license agreed upon to submission
Description: