Quantum programming and synthesis: Internalizing Clifford operations and beyond

dc.contributor.authorWinnick, Samuel
dc.date.accessioned2025-04-29T13:04:57Z
dc.date.available2025-04-29T13:04:57Z
dc.date.issued2025-04-29
dc.date.submitted2025-04-22
dc.description.abstractClifford operations are a subset of quantum operations used extensively in quantum error correction and classical simulation of quantum circuits. The first part of the thesis is motivated by the problem of programming with generalized Clifford operations, such as the quantum Fourier transform. We delve into the algebraic complications that arise for systems of even dimension $d$, and we are particularly interested in the case when $d$ is a power of $2$. We apply our results in the design of a quantum functional programming language, in which the user does not have to worry about these irrelevant complications. Later, we consider the problem of compiling circuits over universal gate sets. In particular, we study the problem of multi-qutrit exact synthesis over a variety of gate sets including Clifford gates. Lastly, we present a framework for defining a symplectic form on an object in a sufficiently structured category, and lay out the theory, generalizing the theory of symplectic forms on a finite dimensional vector space or locally compact abelian group. In the process, we develop new results and perspectives on operations defined on categories.
dc.identifier.urihttps://hdl.handle.net/10012/21670
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectquantum computing
dc.subjectcategory theory
dc.subjectcircuit synthesis
dc.subjectprogramming languages
dc.titleQuantum programming and synthesis: Internalizing Clifford operations and beyond
dc.typeDoctoral Thesis
uws-etd.degreeDoctor of Philosophy
uws-etd.degree.departmentCombinatorics and Optimization
uws-etd.degree.disciplineCombinatorics and Optimization (Quantum Information)
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorYard, Jon
uws.contributor.advisorMosca, Michele
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Winnick_Samuel.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: