UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures

Loading...
Thumbnail Image

Date

2019-10-23

Authors

Chen, Shuoyuan

Advisor

Radovanovic, Pavle

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Localized surface plasmon resonance (LSPR) in semiconductor nanostructures have attracted intense attention recently for its broad application in bio-imaging, chemical sensing, photocatalysis, and photovoltaics. Compared to the LSPR in metallic nanocrystals (NCs), LSPR in semiconductor NCs is highly tunable in the infrared region by tailoring chemical composition and stoichiometry. Moreover, LSPR along with external magnetic field allows the exploration of magneto-plasmonic coupling in single-phase semiconductors, opening up the magneto-optical ways to control charge carriers. In this thesis, we focus on the LSPR as well as magneto-optical properties of indium nitride (InN), providing valuable insights into the insufficiently researched III-V group semiconductors. Wurtzite phase InN NCs were successfully synthesized using the low-temperature colloidal method, and the plasmon intensity is tunable by changing the synthesis environment and varying doping concentrations of aluminum and titanium ions. Due to the combined effects of conduction band non-parabolicity and intraband transition, our InN NCs with different plasmon intensities have an almost fixed plasmonic energy of 0.37 eV. Besides, the optical bandgap of pure InN NCs ranges from 1.5 to 1.75 eV, depending on the reaction conditions, while that of the Al and Ti-doped InN varies from 1.65 to 1.85 eV. The plasmon-dependent phonon change is evaluated by the Raman spectroscopy. Differences in the longitudinal-optical (LO) phonon mode was observed for InN with high and low plasmon intensity. The magneto-optical properties of InN NCs were measured by the magnetic circular dichroism (MCD). The field-dependence and temperature-independence of the measured MCD spectra were investigated, and the plasmon-induced polarization of carriers was demonstrated. Tuning of the carrier polarization by varying LSPR and external magnetic field corroborates the hypothesis of non-resonant coupling between plasmons and excitons in a single-phase semiconductor. The results of this work demonstrate that LSPR can act as a degree of freedom in manipulating electrons in technologically-important III-V nanostructures and lead to potential applications in photonics and quantum computing at room temperature. Finally, InN nanowires (NWs) with LSPR were fabricated via low-temperature chemical vapor deposition (CVD) approach, laying the groundwork for the future research of LSPR and magneto-plasmonics in a one-dimensional system.

Description

Keywords

LSPR, InN, nanocrystal, nanowire, CVD, MCD, magneto-plasmon coupling

LC Subject Headings

Citation

Collections