Physics in Higher-Dimensional Manifolds
Loading...
Date
2003
Authors
Seahra, Sanjeev
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
In this thesis, we study various aspects of physics in higher-dimensional manifolds involving a single extra dimension. After giving some historical perspective on the motivation for studying higher-dimensional theories of physics, we describe classical tests for a non-compact extra dimension utilizing test particles and pointlike gyroscopes. We then turn our attention to the problem of embedding any given <i>n</i>-dimensional spacetime within an (<i>n</i>+1)-dimensional manifold, paying special attention to how any structure from the extra dimension modifies the standard <i>n</i>-dimensional Einstein equations. Using results derived from this investigation and the formalism derived for test particles and gyroscopes, we systematically introduce three specific higher-dimensional models and classify their properties; including the Space-Time-Matter and two types of braneworld models. The remainder of the thesis concentrates on specific higher-dimensional cosmological models drawn from the above mentioned scenarios; including an analysis of the embedding of Friedmann-Lemaitre-Robertson-Walker submanifolds in 5-dimensional Minkowski and topological Schwarzschild spaces, and an investigation of the dynamics of a <i>d</i>-brane that takes the form of a thin shell encircling a (<i>d</i>+2)-dimensional topological black hole in anti-deSitter space. The latter is derived from a finite-dimensional action principle, which allows us to consider the canonical quantization of the model and the solutions of the resulting Wheeler-DeWitt equation.
Description
Keywords
Physics & Astronomy, general relativity, extra dimensions, brane world scenarios, Kaluza-Klein theory, Space-Time-Matter theory