Thermodynamics and Universality in Anisotropic Higher Curvature Spacetimes

dc.contributor.advisorMann, Robert
dc.contributor.authorBrenna, Wilson
dc.date.accessioned2016-06-16T19:55:34Z
dc.date.available2016-06-16T19:55:34Z
dc.date.issued2016-06-16
dc.date.submitted2016-06-08
dc.description.abstractIn my thesis, I describe new results in the thermodynamics of black holes in two gravitational scenarios: spacetime anisotropy and higher curvature gravity. I focus on classifying the critical point of "Large Black Hole / Small Black Hole" phase transitions in higher curvature gravity in various dimensions, for both numerical and analytic black hole solutions. Special emphasis will be placed on five-dimensional cubic and quartic quasitopological gravity. I cover the motivation and document a number of higher curvature black hole solutions as well as the thermodynamic behaviour of these black holes when they are asymptotically Lifshitz symmetric (a form of anisotropy). I describe the methodology used to construct the set of thermodynamic potentials for black holes with general asymptotics from a collection of well-justified conjectures, followed by the development of procedures to numerically and analytically determine unknown quantities such as mass and thermodynamic volume from these conjectures. I will complete this thesis by extracting the critical exponents and thereby finding the universality class of the critical behaviour for a number of black hole solutions. This work has implications for the study of the gauge/gravity duality as well as for the dynamical behaviour of black holes.en
dc.identifier.urihttp://hdl.handle.net/10012/10554
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecthep-then
dc.subjectgr-qcen
dc.subjecttheoretical physicsen
dc.titleThermodynamics and Universality in Anisotropic Higher Curvature Spacetimesen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorMann, Robert
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brenna_Wilson.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: