Cardinality Constrained Robust Optimization Applied to a Class of Interval Observers

dc.contributor.authorMcCarthy, Philip James
dc.contributor.authorNielsen, Christopher
dc.contributor.authorSmith, Stephen L.
dc.date.accessioned2021-09-23T18:47:09Z
dc.date.available2021-09-23T18:47:09Z
dc.date.issued2014-07-21
dc.descriptionMcCarthy, P. J., Nielsen, C., & Smith, S. L. (2014). Cardinality constrained robust optimization applied to a class of interval observers. 2014 American Control Conference, 5337–5342. https://doi.org/10.1109/ACC.2014.6859149en
dc.description.abstractWe propose a linear programming-based method of interval observer design for systems with uncertain but bounded model parameters and initial conditions. We assume that each uncertain parameter in the system model is bounded by conservative guaranteed bounds, and tighter conditional bounds. We define a class of systems by the number of conservative bounds required to bound all uncertain parameters. Using robust optimization, we solve a single linear program per class of systems to obtain gains for the interval observer. A conservative upper bound on the worst-case steady-state performance of the interval observers over the specified class of systems is minimized.en
dc.description.sponsorshipThis research is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)en
dc.identifier.urihttps://doi.org/10.1109/ACC.2014.6859149
dc.identifier.urihttp://hdl.handle.net/10012/17500
dc.language.isoenen
dc.publisherIEEEen
dc.relation.ispartofseriesAmerican Control Conference;
dc.subjectRobustnessen
dc.subjectGolden
dc.subjectObserversen
dc.subjectUncertaintyen
dc.subjectOptimizationen
dc.subjectUpper bounden
dc.subjectVectorsen
dc.titleCardinality Constrained Robust Optimization Applied to a Class of Interval Observersen
dc.typeConference Paperen
dcterms.bibliographicCitationMcCarthy, P. J., Nielsen, C., & Smith, S. L. (2014). Cardinality constrained robust optimization applied to a class of interval observers. 2014 American Control Conference, 5337–5342. https://doi.org/10.1109/ACC.2014.6859149en
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Electrical and Computer Engineeringen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
19 (1).pdf
Size:
372.45 KB
Format:
Adobe Portable Document Format
Description:
Main Conference Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: