Deterministic and Probabilistic Bijective Combinatorics for Macdonald Polynomials

dc.contributor.authorDantas e Moura, Guilherme Zeus
dc.date.accessioned2025-12-11T15:26:47Z
dc.date.available2025-12-11T15:26:47Z
dc.date.issued2025-12-11
dc.date.submitted2025-12-10
dc.description.abstractPermuted-basement Macdonald polynomials ๐ธ^๐œŽ_๐›ผ(๐ฑ; ๐‘ž, ๐‘ก) are nonsymmetric generalizations of symmetric Macdonald polynomials indexed by a composition ๐›ผ and a permutation ๐œŽ. They form a basis for the polynomial ring โ„š(๐‘ž, ๐‘ก)[๐ฑ] for each fixed permutation ๐œŽ. They can be described combinatorially as generating functions over augmented fillings of composition shape ๐›ผ with a basement permutation ๐œŽ. We construct deterministic bijections and probabilistic bijections on fillings that prove identities relating ๐ธ^๐œŽ_๐›ผ, ๐ธ^{๐œŽ๐‘ แตข}_๐›ผ, ๐ธ^๐œŽ_{๐‘ แตข๐›ผ}, and ๐ธ^{๐œŽ๐‘ แตข}_{๐‘ แตข๐›ผ}. These identities correspond to two combinatorial operations on the shape and basement of the fillings: swapping adjacent parts in the shape, which expands ๐ธ^๐œŽ_๐›ผ in terms of ๐ธ^๐œŽ_{๐‘ แตข๐›ผ} and ๐ธ^{๐œŽ๐‘ แตข}_{๐‘ แตข๐›ผ}; and swapping adjacent entries in the basement, which gives ๐ธ^๐œŽ_๐›ผ = ๐ธ^{๐œŽ๐‘ แตข}_๐›ผ when ๐›ผแตข = ๐›ผแตขโ‚Šโ‚.
dc.identifier.urihttps://hdl.handle.net/10012/22733
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectbijective combinatorics
dc.subjectMacdonald polynomials
dc.subjecttableaux combinatorics
dc.subjectnon-attacking fillings
dc.subjectprobabilistic bijections
dc.titleDeterministic and Probabilistic Bijective Combinatorics for Macdonald Polynomials
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentCombinatorics and Optimization
uws-etd.degree.disciplineCombinatorics and Optimization
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorMandelshtam, Olya
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dantas e Moura_Guilherme Zeus.pdf
Size:
785.22 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: