An Intelligent Expert System for Decision Analysis and Support in Multi-Attribute Layout Optimization

Loading...
Thumbnail Image

Date

2005

Authors

Ahmad, Abdul-Rahim

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Layout Decision Analysis and Design is a ubiquitous problem in a variety of work domains that is important from both strategic and operational perspectives. It is largely a complex, vague, difficult, and ill-structured problem that requires intelligent and sophisticated decision analysis and design support. <br /><br /> Inadequate information availability, combinatorial complexity, subjective and uncertain preferences, and cognitive biases of decision makers often hamper the procurement of a superior layout configuration. Consequently, it is desirable to develop an intelligent decision support system for layout design that could deal with such challenging issues by providing efficient and effective means of generating, analyzing, enumerating, ranking, and manipulating superior alternative layouts. <br ><br /> We present a research framework and a functional prototype for an interactive Intelligent System for Decision Support and Expert Analysis in Multi-Attribute Layout Optimization (IDEAL) based on soft computing tools. A fundamental issue in layout design is efficient production of superior alternatives through the incorporation of subjective and uncertain design preferences. Consequently, we have developed an efficient and Intelligent Layout Design Generator (ILG) using a generic two-dimensional bin-packing formulation that utilizes multiple preference weights furnished by a fuzzy Preference Inferencing Agent (PIA). The sub-cognitive, intuitive, multi-facet, and dynamic nature of design preferences indicates that an automated Preference Discovery Agent (PDA) could be an important component of such a system. A user-friendly, interactive, and effective User Interface is deemed critical for the success of the system. The effectiveness of the proposed solution paradigm and the implemented prototype is demonstrated through examples and cases. <br /><br /> This research framework and prototype contribute to the field of layout decision analysis and design by enabling explicit representation of experts? knowledge, formal modeling of fuzzy user preferences, and swift generation and manipulation of superior layout alternatives. Such efforts are expected to afford efficient procurement of superior outcomes and to facilitate cognitive, ergonomic, and economic efficiency of layout designers as well as future research in related areas. <br /><br /> Applications of this research are broad ranging including facilities layout design, VLSI circuit layout design, newspaper layout design, cutting and packing, adaptive user interfaces, dynamic memory allocation, multi-processor scheduling, metacomputing, etc.

Description

Keywords

Systems Design, Expert & Decision Support Systems, Intelligent/Soft Computing, Preference Modeling/Discovery, Multi-Attribute Decision Modeling, Fuzzy Logic, Neural Networks, Layout Optimization/Heuristics, Genetic Algorithms, Operations Management, Mathematical Programming

LC Subject Headings

Citation