Frequency Analysis of Droughts Using Stochastic and Soft Computing Techniques

dc.contributor.authorSadri, Sara
dc.date.accessioned2010-05-19T20:29:50Z
dc.date.available2010-05-19T20:29:50Z
dc.date.issued2010-05-19T20:29:50Z
dc.date.submitted2010
dc.description.abstractIn the Canadian Prairies recurring droughts are one of the realities which can have significant economical, environmental, and social impacts. For example, droughts in 1997 and 2001 cost over $100 million on different sectors. Drought frequency analysis is a technique for analyzing how frequently a drought event of a given magnitude may be expected to occur. In this study the state of the science related to frequency analysis of droughts is reviewed and studied. The main contributions of this thesis include development of a model in Matlab which uses the qualities of Fuzzy C-Means (FCMs) clustering and corrects the formed regions to meet the criteria of effective hydrological regions. In FCM each site has a degree of membership in each of the clusters. The algorithm developed is flexible to get number of regions and return period as inputs and show the final corrected clusters as output for most case scenarios. While drought is considered a bivariate phenomena with two statistical variables of duration and severity to be analyzed simultaneously, an important step in this study is increasing the complexity of the initial model in Matlab to correct regions based on L-comoments statistics (as apposed to L-moments). Implementing a reasonably straightforward approach for bivariate drought frequency analysis using bivariate L-comoments and copula is another contribution of this study. Quantile estimation at ungauged sites for return periods of interest is studied by introducing two new classes of neural network and machine learning: Radial Basis Function (RBF) and Support Vector Machine Regression (SVM-R). These two techniques are selected based on their good reviews in literature in function estimation and nonparametric regression. The functionalities of RBF and SVM-R are compared with traditional nonlinear regression (NLR) method. As well, a nonlinear regression with regionalization method in which catchments are first regionalized using FCMs is applied and its results are compared with the other three models. Drought data from 36 natural catchments in the Canadian Prairies are used in this study. This study provides a methodology for bivariate drought frequency analysis that can be practiced in any part of the world.en
dc.identifier.urihttp://hdl.handle.net/10012/5198
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectDroughtsen
dc.subjectFrequency Analysisen
dc.subjectFuzzy C-Meansen
dc.subjectClusteringen
dc.subjectRegionalizationen
dc.subjectL-momentsen
dc.subjectL-comomentsen
dc.subjectBivariate Copulaen
dc.subjectRadial Basis Functionen
dc.subjectSupport Vector Machine Regressionen
dc.subjectNonlinear Regressionen
dc.subjectNonlinear Regression with Regionalizationen
dc.subject.programCivil Engineeringen
dc.titleFrequency Analysis of Droughts Using Stochastic and Soft Computing Techniquesen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SSADRI_PhD_Thesis.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
253 B
Format:
Item-specific license agreed upon to submission
Description: