Discrete Quantum Walks on Graphs and Digraphs
dc.contributor.author | Zhan, Hanmeng | |
dc.date.accessioned | 2018-09-26T16:22:35Z | |
dc.date.available | 2018-09-26T16:22:35Z | |
dc.date.issued | 2018-09-26 | |
dc.date.submitted | 2018-09-25 | |
dc.description.abstract | This thesis studies various models of discrete quantum walks on graphs and digraphs via a spectral approach. A discrete quantum walk on a digraph $X$ is determined by a unitary matrix $U$, which acts on complex functions of the arcs of $X$. Generally speaking, $U$ is a product of two sparse unitary matrices, based on two direct-sum decompositions of the state space. Our goal is to relate properties of the walk to properties of $X$, given some of these decompositions. We start by exploring two models that involve coin operators, one due to Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani. While $U$ is not defined as a function in the adjacency matrix of the graph $X$, we find exact spectral correspondence between $U$ and $X$. This leads to characterization of rare phenomena, such as perfect state transfer and uniform average vertex mixing, in terms of the eigenvalues and eigenvectors of $X$. We also construct infinite families of graphs and digraphs that admit the aforementioned phenomena. The second part of this thesis analyzes abstract quantum walks, with no extra assumption on $U$. We show that knowing the spectral decomposition of $U$ leads to better understanding of the time-averaged limit of the probability distribution. In particular, we derive three upper bounds on the mixing time, and characterize different forms of uniform limiting distribution, using the spectral information of $U$. Finally, we construct a new model of discrete quantum walks from orientable embeddings of graphs. We show that the behavior of this walk largely depends on the vertex-face incidence structure. Circular embeddings of regular graphs for which $U$ has few eigenvalues are characterized. For instance, if $U$ has exactly three eigenvalues, then the vertex-face incidence structure is a symmetric $2$-design, and $U$ is the exponential of a scalar multiple of the skew-symmetric adjacency matrix of an oriented graph. We prove that, for every regular embedding of a complete graph, $U$ is the transition matrix of a continuous quantum walk on an oriented graph. | en |
dc.identifier.uri | http://hdl.handle.net/10012/13952 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.subject | algebraic graph theory | en |
dc.subject | quantum walks | en |
dc.subject | graph embeddings | en |
dc.title | Discrete Quantum Walks on Graphs and Digraphs | en |
dc.type | Doctoral Thesis | en |
uws-etd.degree | Doctor of Philosophy | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws-etd.degree.discipline | Combinatorics and Optimization | en |
uws-etd.degree.grantor | University of Waterloo | en |
uws.contributor.advisor | Godsil, Chris | |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |