On the Modular Theory of von Neumann Algebras

dc.contributor.authorBoey, Edward
dc.date.accessioned2010-09-17T15:15:42Z
dc.date.available2010-09-17T15:15:42Z
dc.date.issued2010-09-17T15:15:42Z
dc.date.submitted2010
dc.description.abstractThe purpose of this thesis is to provide an exposition of the \textit{modular theory} of von Neumann algebras. The motivation of the theory is to classify and describe von Neumann algebras which do not admit a trace, and in particular, type III factors. We replace traces with weights, and for a von Neumann algebra $\mathcal{M}$ which admits a weight $\phi$, we show the existence of an automorphic action $\sigma^\phi:\mathbb{R}\rightarrow\text{Aut}(\mathcal{M})$. After showing the existence of these actions we can discuss the crossed product construction, which will then allow us to study the structure of the algebra.en
dc.identifier.urihttp://hdl.handle.net/10012/5487
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectvon Neumann algebrasen
dc.subjectmodular automorphismen
dc.subject.programPure Mathematicsen
dc.titleOn the Modular Theory of von Neumann Algebrasen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Boey_Edward.pdf
Size:
531.98 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
245 B
Format:
Item-specific license agreed upon to submission
Description: