A Graph-Transformation Modelling Framework for Supervisory Control

dc.contributor.authorBenhamron, Jeremie
dc.date.accessioned2016-06-10T19:11:24Z
dc.date.available2016-06-10T19:11:24Z
dc.date.issued2016-06-10
dc.date.submitted2016-06-10
dc.description.abstractFormal design methodologies have the potential to accelerate the development and increase the reliability of supervisory controllers designed within industry. One promising design framework which has been shown to do so is known as supervisory control synthesis (SCS). In SCS, instead of manually designing the supervisory controller itself, one designs models of the uncontrolled system and its control requirements. These models are then provided as input to a special synthesis algorithm which uses them to automatically generate a model of the supervisory controller. This outputted model is guaranteed to be correct as long as the models of the uncontrolled system and its control requirements are valid. This accelerates development by removing the need to verify and rectify the model of the supervisory controller. Instead, only the models of the uncontrolled system and its requirements must be validated. To address problems of scale, SCS can be applied in modular fashion, and implemented in hierarchical and decentralized architectures. Despite the large body of research con rming the bene ts of integrating SCS within the development process of supervisory controllers, it has still not yet found widespread application within industry. In the author's opinion, this is partly attributed to the non-user-friendly nature of the automaton-based modelling framework used create the models of the uncontrolled system (and control requirements in even-based SCS). It is believed that in order for SCS to become more accessible to a wider range of non experts, modelling within SCS must be made more intuitive and user-friendly. To improve the usability of SCS, this work illustrates how a graph transformation-based modelling approach can be employed to generate the automaton models required for supervisory control synthesis. Furthermore, it is demonstrated how models of the speci cation can be intuitively represented within our proposed modelling framework for both event- and state-based supervisory control synthesis. Lastly, this thesis assesses the relative advantages brought about by the proposed graph transformation-based modelling framework over the conventional automaton based modelling approach.en
dc.identifier.urihttp://hdl.handle.net/10012/10542
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectGraph rewriting systemsen
dc.subjectModelling discrete event systemsen
dc.subjectSupervisory control theoryen
dc.titleA Graph-Transformation Modelling Framework for Supervisory Controlen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorThistle, John
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Benhamron_Jeremie.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: