UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Growth and Characterization of epitaxial FeCo/MgO/EuS Magnetic Tunnel Junctions on MgO buffered (100)-Si

dc.contributor.authorzhiwei, gao
dc.date.accessioned2016-04-15T16:08:50Z
dc.date.available2016-04-15T16:08:50Z
dc.date.issued2016-04-15
dc.date.submitted2016-04-14
dc.description.abstractIn the last few decades, due to the dramatic improvement of the TMR (tunneling magnetoresistance) effect in MTJs (Magnetic Tunnel Junctions), the data storage industry has been revolutionized. There are so many applications based on this technology, e.g.: read head in hard disk drives; magnetic sensors, etc., while its most advanced application nowadays is on the Magnetoresistive Random Access Memory (MRAM), a type of nonvolatile, high speed, high density, yet low power consumption memory - often termed the “universal memory” [1]. For most applications, magnetic tunnel junctions are fabricated with thin film technologies. In industry, they are mostly deposited by magnetron sputtering for mass production purposes. While in research laboratories, MBE (Molecular Beam Epitaxy), PLD (Pulsed Laser Deposition), and E-beam (Electron beam physical vapor deposition) are often used to deposit well-controlled, high quality layers. The very core component of an MRAM cell is an MTJ, which possesses the desired TMR effect. An MTJ basically consists two ferromagnetic materials separated by a thin insulator. Typically, the connection across the insulating layer is what we call a junction, and the layer is usually a few nanometers thick, which ensures that the junction is thin enough to let the electrons tunnel from one side of the insulator to the other. This is a purely quantum mechanical phenomenon and will be forbidden in classical physics because classically an insulator cannot conduct. In this thesis, we demonstrated the epitaxial growth of the tunnel junctions FeCo/MgO/EuS/Ti on MgO-buffered Si (100) wafers, and showed that TMR in these junction reaches up to 64% at 4.2K. We also discovered how different thicknesses of MgO and measurement temperatures affect the TMR of these junctions. We then optimized the growth conditions of the junctions, and used XPS (X-Ray Photoelectron Spectroscopy) to analyze their chemical characteristic features. The best TMR occurring at 1nm MgO thickness is a result of the competition between symmetry enhancement through MgO, and thickness induced multistep hopping.en
dc.identifier.urihttp://hdl.handle.net/10012/10374
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectMTJen
dc.subjectTMRen
dc.subjectSpin filteren
dc.titleGrowth and Characterization of epitaxial FeCo/MgO/EuS Magnetic Tunnel Junctions on MgO buffered (100)-Sien
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorMiao, Guoxing
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gao_Zhiwei.pdf
Size:
11.83 MB
Format:
Adobe Portable Document Format
Description:
This is my thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: