UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The Effectiveness of Persulfate in the Oxidation of Petroleum Contaminants in Saline Environment at Elevated Groundwater Temperature

dc.comment.hiddenPublication is pending and I wish to delay web access/display for four months from the date of submissionen
dc.contributor.authorSaeed, Waleed
dc.date.accessioned2011-12-08T18:58:18Z
dc.date.available2011-12-08T18:58:18Z
dc.date.issued2011-12-08T18:58:18Z
dc.date.submitted2011
dc.description.abstractIn the past few decades, several aqueous oxidants have been employed (e.g., permanganate, persulfate) to remediate petroleum hydrocarbons. However, the majority of the research in this field has been focused primarily on the use of oxidants in treating fresh water at low groundwater temperature. In this study, bench experiments were carried out to investigate the effectiveness of persulfate (PS) as an oxidant to remediate petroleum hydrocarbons in alternative settings (saline environments at high groundwater temperature). Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), Trimethylbenzenes (TMBs), and Naphthalene were the target organic compounds investigated. Three important aspects were examined during this laboratory study: 1) the evaluation of (alkaline activated and non-activated) persulfate as a chemical oxidation agent; 2) the investigation of the effect of different temperatures (10°C versus 30°C); and 3) the examination of the effect of different persulfate concentration (20 versus 100 g/L) on the reactivity of persulfate. The results showed the high potential of persulfate to remediate the target contaminants under certain conditions. In general, alkaline-activated persulfate showed a higher potential than the non-activated persulfate. However, precipitations of calcium hydroxide were observed due to the reaction between sodium hydroxide and the high concentration of calcium which will limit the use of alkaline-activated persulfate in this particular groundwater setting The results also showed that the initial concentration of persulfate and the system temperature can play important roles in enhancing the effectiveness of PS to oxidize the target contaminants. For instance, the oxidation rate of the target contaminants was seen to be dramatically increased by increasing the persulfate addition from 20 to 100 g/L as well as with increasing the system temperature from 10°C to 30°C. However, increasing both factors (temperature and concentration) accelerated the decomposition rate of PS. Lowering the system pH was tremendously successful in order to enhance the oxidation rate of all compounds. Moreover, the expected effect of the radicals scavenging at acidic pH by Cl- and Br – ,which was reported in the literatures (e.g., Pignatello et al., 2006; Grebel et al., 2010; Suri et al., 2010), was not observed in this study which might be attributed to the contribution of the produced halogen radicals to the contaminant oxidation.en
dc.identifier.urihttp://hdl.handle.net/10012/6396
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectChemical Oxidationen
dc.subjectPersulfateen
dc.subject.programEarth Sciencesen
dc.titleThe Effectiveness of Persulfate in the Oxidation of Petroleum Contaminants in Saline Environment at Elevated Groundwater Temperatureen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentEarth Sciencesen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saeed_Waleed.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
247 B
Format:
Item-specific license agreed upon to submission
Description: