Design, Fabrication, and Testing of a Dielectric Elastomer based Ambulatory Active Compression Device

dc.contributor.advisorSalehian, Armaghan
dc.contributor.authorEdher, Hamza
dc.date.accessioned2016-09-28T19:11:38Z
dc.date.available2017-08-27T04:50:08Z
dc.date.issued2016-09-28
dc.date.submitted2016-09-22
dc.description.abstractVarious vascular disorders such as deep vein thrombosis and edema have been associated with the pooling of venous blood in the lower limbs due to extended periods of immobility. Prophylaxis against peripheral vascular diseases in the lower limbs commonly involves the utilization of external compression, in particular pneumatic active compression (PAC). Although effective, PAC systems require the use of an air compressor and flow system, and are therefore unsuitable for ambulatory use. In this research, a novel design for a dielectric elastomer (DE) based active compression device design is presented, fabricated, and experimentally validated. The system comprises of a belt mechanism connected in conjunction with a DE actuator. The belt mechanism is utilized in order to overcome an intrinsic shortcoming of DE actuators and in turn allow active compression to be applied directly with voltage application. In doing so, the presented design reduces the period during which the actuator is charged thus improving system lifetime and power efficiency. Analytical models characterizing the operation of the belt mechanisms are formulated and validated experimentally with less than 7% error. Both static and dynamic testing is conducted in order to characterize the effectiveness of the active compression device. It is determined that the actuation output amplitudes are reduced when actuating cyclically. To combat this, a novel method of dynamically charging DE actuators through manipulating the input signal shape, termed the hold method, is introduced. It is shown that through implementing the hold time method cyclic actuation output can be increased by 24% with insignificant change in the desired actuation output curve shape. The optimized hold time parameters obtained through cyclic DE force and strain testing are utilized for active compression testing and a physiologically beneficial pressure gradient of 10 mmHg is achieved. A regenerative powering circuit and control system utilized to charge two capacitive elements sequentially by transferring charge from one component to the other is introduced. This circuit aims to increase the energy efficiency of the system and provides potential to be utilized in an active compression system where more than one active element is present. Preliminary testing is conducted on the circuit and the associated timing control system and it is shown to operate effectively for capacitive elements with low resistances, reducing the energy requirements to charge the second component by up to 25%.en
dc.identifier.urihttp://hdl.handle.net/10012/10957
dc.language.isoenen
dc.pendingfalse
dc.provenanceEmbargo extended by Courtney Earl Matthews (ce2matth@uwaterloo.ca) in UWSpace on 2016-10-24T14:55:17Z (GMT). Changed from 2017-01-26 to 2017-08-26en
dc.publisherUniversity of Waterlooen
dc.titleDesign, Fabrication, and Testing of a Dielectric Elastomer based Ambulatory Active Compression Deviceen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.comment.hiddenDeadline for 100% tuition refund is 28 Sep. Your quick feedback would be very much appreciated. Thank you!en
uws.contributor.advisorSalehian, Armaghan
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Edher_Hamza.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: