Elliptic Curves over Finite Fields and their l-Torsion Galois Representations

dc.contributor.authorBaker, Michael
dc.date.accessioned2015-09-08T13:32:02Z
dc.date.available2015-09-08T13:32:02Z
dc.date.issued2015-09-08
dc.date.submitted2015-08-25
dc.description.abstractLet $q$ and $\ell$ be distinct primes. Given an elliptic curve $E$ over $\mathbf{F}_q$, we study the behaviour of the 2-dimensional Galois representation of $\mathrm{Gal}(\overline{\mathbf{F}_q}/\mathbf{F}_q) \cong \widehat{\mathbf Z}$ on its $\ell$-torsion subgroup $E[\ell]$. This leads us to the problem of counting elliptic curves with prescribed $\ell$-torsion Galois representations, which we answer for small primes $\ell$ by counting rational points on suitable modular curves. The resulting exact formulas yield expressions for certain sums of Hurwitz class numbers.en
dc.identifier.urihttp://hdl.handle.net/10012/9649
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterloo
dc.subjectelliptic curvesen
dc.subjectmodular formsen
dc.subjectHurwitz class numbersen
dc.subjectquadratic formsen
dc.subjectmodular curvesen
dc.subject.programPure Mathematicsen
dc.titleElliptic Curves over Finite Fields and their l-Torsion Galois Representationsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baker_Michael.pdf
Size:
314.24 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: