Design, construction, and operation of a compact, ultrafast 100kV electron diffraction instrument
| dc.contributor.author | Netzke, Samuel | |
| dc.date.accessioned | 2025-09-08T17:17:54Z | |
| dc.date.available | 2025-09-08T17:17:54Z | |
| dc.date.issued | 2025-09-08 | |
| dc.date.submitted | 2025-08-13 | |
| dc.description.abstract | Elucidating the structure and properties of nanomaterials at greater resolutions necessitates the continuing development of novel imaging techniques. Electron imaging methods (such as electron microscopy/diffraction) are well-suited for probing matter at the nanoscale; for a given energy, the electron scattering cross-section is ~10⁵⁻⁶ higher than X-rays and ~10³ times less damaging [1]. Ultrafast electron imaging techniques are capable of spatial and temporal resolutions down to ~0.1 nm and 100 fs (femtosecond), respectively. This enables the observation of fundamental dynamic processes including photoinduced phase transitions, electron-phonon energy transfer, and the evolution of coherent phonons [2]. At present, open user access to the incredible power of these ultrafast techniques is generally limited to one ultrafast electron diffraction (UED) facility. Existing, well-established methods used to study nanomaterials such as X-ray diffraction and conventional electron microscopy have a plethora of commercially available, laboratory scale instruments which can be used to carry out experiments. In contrast, there are no similar turn-key devices that enable the study of ultrafast dynamic processes. The construction of an in-house ultrafast electron diffraction apparatus is one solution to the problem of instrument accessibility and the realization of time-demanding experiments with proper controls. In this thesis, I document the design, assembly, and use of a compact laboratory scale UED instrument. The instrument is capable of stable operation at 100 kV, with subsequent development and testing suggesting that it can reach voltages in excess of ~130 kV. The instrument is able to produce electron pulses with a temporal length of ~200 fs while containing a sufficient number of electrons for adequate signal-to-noise level. Two experiments were then carried out using the UED apparatus in order to showcase its time and spatial resolutions: electron deflection by photoinduced plasma, and the investigation of the charge density wave (CDW) material NbTe2. Analysis of the time-resolved diffraction data collected from the NbTe2 measurements suggests at 60 kV demonstrate sub-picosecond resolution in agreement with the predicted instrument response obtained from N-particle tracer simulations. | |
| dc.identifier.uri | https://hdl.handle.net/10012/22358 | |
| dc.language.iso | en | |
| dc.pending | false | |
| dc.publisher | University of Waterloo | en |
| dc.subject | ultrafast structural dynamics | |
| dc.subject | ultrafast electron diffraction | |
| dc.subject | instrumentation | |
| dc.subject | charge density wave | |
| dc.title | Design, construction, and operation of a compact, ultrafast 100kV electron diffraction instrument | |
| dc.type | Doctoral Thesis | |
| uws-etd.degree | Doctor of Philosophy | |
| uws-etd.degree.department | Chemistry | |
| uws-etd.degree.discipline | Chemistry | |
| uws-etd.degree.grantor | University of Waterloo | en |
| uws-etd.embargo.terms | 2 years | |
| uws.contributor.advisor | Sciaini, Germán | |
| uws.contributor.affiliation1 | Faculty of Science | |
| uws.peerReviewStatus | Unreviewed | en |
| uws.published.city | Waterloo | en |
| uws.published.country | Canada | en |
| uws.published.province | Ontario | en |
| uws.scholarLevel | Graduate | en |
| uws.typeOfResource | Text | en |