MATRIX ALGEBRAS WITH A CERTAIN COMPRESSION PROPERTY I
dc.contributor.author | Cramer, Zachary | |
dc.contributor.author | Marcoux, Laurent W. | |
dc.contributor.author | Radjavi, Heydar | |
dc.date.accessioned | 2022-05-10T18:52:16Z | |
dc.date.available | 2022-05-10T18:52:16Z | |
dc.date.issued | 2021-07-15 | |
dc.description | The final publication is available at Elsevier via https://doi.org/10.1016/j.laa.2021.03.005. © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license | en |
dc.description.abstract | An algebra A of n × n complex matrices is said to be projection compressible if P AP is an algebra for all orthogonal projections P ∈ Mn(C). Analogously, A is said to be idempotent compressible if EAE is an algebra for all idempotents E in Mn(C). In this paper we construct several examples of unital algebras that admit these properties. In addition, a complete classification of the unital idempotent compressible subalgebras of M3(C) is obtained up to similarity and transposition. It is shown that in this setting, the two notions of compressibility agree: a unital subalgebra of M3(C) is projection compressible if and only if it is idempotent compressible. Our findings are extended to algebras of arbitrary size in [2] | en |
dc.description.sponsorship | Research supported in part by NSERC (Canada). | en |
dc.identifier.uri | https://doi.org/10.1016/j.laa.2021.03.005 | |
dc.identifier.uri | http://hdl.handle.net/10012/18252 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | compression | en |
dc.subject | projection compressibility | en |
dc.subject | idempotent compressibility | en |
dc.subject | algebraic corners | en |
dc.title | MATRIX ALGEBRAS WITH A CERTAIN COMPRESSION PROPERTY I | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Cramer, Z., Marcoux, L. W., & Radjavi, H. (2021). Matrix algebras with a certain compression property I. Linear Algebra and Its Applications, 621, 50–85. https://doi.org/10.1016/j.laa.2021.03.005 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CramerZ MarcouxLW RadjaviH 2021 Matrix algebras with a certain compression property I - preprint.pdf
- Size:
- 412.87 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.47 KB
- Format:
- Item-specific license agreed upon to submission
- Description: