Classification Results for Intersective Polynomials With No Integral Roots

dc.contributor.authorBanks, Nicolas
dc.date.accessioned2025-12-08T18:51:36Z
dc.date.available2025-12-08T18:51:36Z
dc.date.issued2025-12-08
dc.date.submitted2025-11-27
dc.description.abstractIn this thesis, we algebraically classify strongly intersective polynomials - polynomials with no integer roots but with a root modulo every positive integer - of degree 5--10. In particular, we compute a list of possible Galois groups of such polynomials. We also prove constraints on the splitting behaviour of ramified primes (i.e. primes that ramify in a splitting field of the polynomial). In the process, we show that intersectivity can be thought of as a property of a Galois number field, together with its set of subfields of specified degrees. This was achieved with characterisations of Berend-Bilu and Sonn, the latter of which we also generalise. Implementations in SageMath and GAP are provided. We also utilise Hensel's Lemma and other standard results on the local behaviour of simple field extensions.
dc.identifier.urihttps://hdl.handle.net/10012/22723
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/N2Banks/Intersective-Polynomials-Algorithms
dc.subjectintersective polynomials
dc.subjectstrongly intersective polynomials
dc.subjectminimally intersective polynomials
dc.subjectlocal-global principle
dc.subjectpolynomial roots modulo integers
dc.subjectp-adic integers
dc.subjectp-adic numbers
dc.subjectz_p
dc.subjectq_p
dc.subjectgalois theory
dc.subjectgalois groups
dc.subjectalgebraic number theory
dc.subjectramification
dc.subjectramification degrees
dc.subjectinertia degrees
dc.subjectdecomposition groups
dc.subjectfrobenius elements
dc.subjectdiscriminants
dc.subjectresultants
dc.subjectsubdirect products
dc.subjectconjugate covering
dc.subjecttransitive subgroups
dc.subjectdihedral groups
dc.subjectclassification
dc.subjectcomputational algebra
dc.subjectgap
dc.subjectgroup theory
dc.subjectsagemath
dc.subjectalgorithmic number theory
dc.subjectexperimental number theory
dc.subjectgroups algorithms programming
dc.subjectergodic theory
dc.subjectlocal fields
dc.subjectinverse galois problem
dc.titleClassification Results for Intersective Polynomials With No Integral Roots
dc.typeDoctoral Thesis
uws-etd.degreeDoctor of Philosophy
uws-etd.degree.departmentPure Mathematics
uws-etd.degree.disciplinePure Mathematics
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorMcKinnon, David
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Banks_Nicolas.pdf
Size:
636.56 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: