Atomic Force Microscopy Study of Model Lipid Monolayers

dc.contributor.authorRozina, Tamara
dc.date.accessioned2012-09-26T19:53:46Z
dc.date.available2012-09-26T19:53:46Z
dc.date.issued2012-09-26T19:53:46Z
dc.date.submitted2012
dc.description.abstractAlzheimer's Disease (AD) is a neurodegenerative disorder that is prevalent among the elderly population. Aß protein has been heavily implicated in the pathogenesis of AD. This protein in its fibrillar form is a major component in the senile plaques that form on neuronal cellular membranes during the course of AD. Despite substantial efforts the exact mechanism of Aß toxicity towards a cell membrane is not well-understood. The determination of this mechanism, however, is of utmost importance, since the membrane presents the first site of Aß interaction with neurons, which in turn maybe the origin of Aß neurotoxicity. The purpose of this study was to find a lipid composition that can be used as a model of neuronal membrane for subsequent studies of the role of topographical heterogeneity (domain formation) on Aß-membrane interaction as related to AD. The lipids used in the study were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), cholesterol (Chol), sphingomyelin (SM) and ganglioside GM1 (GM1). These lipids were combined in different proportions and deposited on a mica substrate to form supported monolayers. They were then imaged with an atomic force microscope (AFM) to determine if any of them exhibited domain formation. Three of the studied samples: POPC/POPG/SM 40:40:20 +5%Chol, POPC/SM/Chol 75:20:5 and POPC/SM/GM1/Chol 74:2:1:23 were found to possess interesting topography, rich in structural features: pores and domains. The average height difference between the domain features for each sample was found to be 0.58±015 nm, 0.61±0.12 nm and 0.27±0:07 nm.en
dc.identifier.urihttp://hdl.handle.net/10012/7035
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectAtomic force microscopyen
dc.subjectLipid Monolayersen
dc.subject.programPhysicsen
dc.titleAtomic Force Microscopy Study of Model Lipid Monolayersen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rozina_Tamara.pdf
Size:
14.92 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
249 B
Format:
Item-specific license agreed upon to submission
Description: