Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat

Loading...
Thumbnail Image

Date

2018-10-01

Authors

McCarter, Colin
Weber, Tobias K. D.
Price, Jonathan S.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

There is sparse information on reactive solute transport in peat; yet, with increasing development of peatland dominated landscapes, purposeful and accidental contaminant releases will occur, so it is important to assess their mobility. Previous experiments with peat have only evaluated single-component solutions, such that no information exists on solute transport of potentially competitively adsorbing ions to the peat matrix. Additionally, recent studies suggest chloride (Cl-) might not be conservative in peat, as assumed by many past peat solute transport studies. Based on measured and modelled adsorption isotherms, this study illustrates concentration dependent adsorption of Cl- to peat occurred in equilibrium adsorption batch (EAB) experiments, which could be described with a Sips isotherm. However, Cl- adsorption was insignificant for low concentrations (<500 mg Lāˆ’1) as used in breakthrough curve experiments (BTC). We found that competitive adsorption of Na+, K+, and NH4+ transport could be observed in EAB and BTC, depending on the dissolved ion species present. Na+ followed a Langmuir isotherm, K+ a linear isotherm within the tested concentration range (~10 ā€“ 1500 mg Lāˆ’1), while the results for NH4+ are inconclusive due to potential microbial degradation. Only Na+ showed clear evidence of competitive behaviour, with an order of magnitude decrease in maximum adsorption capacity in the presence of NH4+ (0.22 to 0.02 mol kg-1), which was confirmed by the BTC data where the Na+ retardation coefficient differed between the experiments with different cations. Thus, solute mobility in peatlands is affected by competitive adsorption.

Description

The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jconhyd.2018.08.004 Ā© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Anion adsorption, Breakthrough curve, Nutrients, Peat, pH, Reactive solute transport

LC Keywords

Citation