Monitoring Chain Dynamics by Luminescence Using a Long-Lived Ruthenium Dye
Loading...
Files
Authors
Quinn, Cristina
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
The purpose of this research project was to determine the feasibility of labelling a water-soluble polymer with a water-soluble dye and quencher. The water-soluble dye chosen was bis-(2,2-bipyridine)-ruthenium(II)
-5-amino-1,10-phenanthroline hexafluorophosphate, RuNH2 , with a water
solubility of 1×10^−3 mol/L. 3,5-Dinitrobenzyl alcohol was found to be an efficient quencher
with a quenching rate constant of 2.7×10^9 M^−1 s^−1 as well as a water-solubility of 5×10^−3 mol/L. Both the dye and quencher were modified in a way such that they could be covalently linked to a polymer. RuNH2 was converted to bis-(2,2-bipyridine)-ruthenium(II)-5-isothiocyanato-1,10-
phenanthroline hexafluoro-phosphate, RuNCS, using thiophosgene to yield an active isothiocyanate group. 3,5-Dinitrobenzylamine, DNB-NH2 , was synthesized via tritylamination of the commercially available 3,5-dinitrobenzyl chloride.
A synthetic pathway has been established to covalently attach the dye and quencher to poly(N,N-dimethylacrylamide)(PDMA). Luminescence of this system was first characterized in N,N-dimethylformamide
(DMF) rather than water to allow for future comparisons to be made between this water-soluble system and the previously established non-water-soluble system. Luminescence analysis of the RuNCS labelled polymers in DMF could be fitted with a sum of three exponentials with the strongest contribution being that of a 1000 ns long-lived species which is characteristic of the free dye. A luminescence decay of a polymer labelled with both RuNCS and DNB-NH2 was acquired and showed static quenching of the ruthenium dye by the quencher.