Mathematical modeling of whole-body electrolyte homeostasis

dc.contributor.authorStadt, Melissa
dc.date.accessioned2025-06-24T18:56:15Z
dc.date.available2025-06-24T18:56:15Z
dc.date.issued2025-06-24
dc.date.submitted2025-06-20
dc.description.abstractElectrolyte balance is crucial for many physiological processes, including cellular signaling, muscle contractions, membrane potentials, hormonal secretion, and bone structure. Disruptions to electrolyte balance, arising from disease, diet, or drugs can have severe health consequences, such as muscle weakness, bone fragility, and life-threatening cardiac arrythmias. Therefore, a comprehensive understanding of these regulatory systems and how they may be disrupted is important for developing effective preventative and therapeutic strategies. Mathematical modeling provides a powerful tool for investigating these systems through simulations and analysis. In this thesis, we present the development and analysis of mathematical models focused on the regulation of key electrolytes, potassium and calcium. For potassium homeostasis, we first developed a detailed, whole-body model incorporating known regulatory mechanisms. We conducted model simulations to quantify the individual contributions of these regulatory mechanisms on long-term potassium balance and responses to a meal. Additionally, we conducted sensitivity analyses to understand how parameter variations impact potassium levels in the extracellular and intracellular fluid. Furthermore, we integrated recent experimental data on renal adaptations to high potassium intake to analyze these findings from a whole-body perspective. For calcium homeostasis, we developed mathematical models representing a male, female, late pregnant, and lactating rat to quantify sex-specific differences and maternal adaptations in calcium regulation. These models synthesized literature data to identify key mechanisms that enable females to meet the high calcium demands of pregnancy and lactation. Finally, we developed an integrated model that represents the renin-angiotensin system, calcium regulation, and bone remodeling to investigate the impact of estrogen deficiency in post-menopausal women and common antihypertensive treatments on bone density and calcium regulation. The research provided in this thesis contributes frameworks for understanding electrolyte homeostasis and predicting the impacts of physiological changes and pharmacological interventions on electrolyte and bone homeostasis.
dc.identifier.urihttps://hdl.handle.net/10012/21923
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecthomeostasis
dc.subjectpotassium
dc.subjectcalcium
dc.subjectODE
dc.subjectmathematical modeling
dc.subjectMEDICINE::Physiology and pharmacology::Physiology
dc.titleMathematical modeling of whole-body electrolyte homeostasis
dc.typeDoctoral Thesis
uws-etd.degreeDoctor of Philosophy
uws-etd.degree.departmentApplied Mathematics
uws-etd.degree.disciplineApplied Mathematics
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorLayton, Anita
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Stadt_Melissa.pdf
Size:
12.37 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: