Frozen-State Hierarchical Annealing

Loading...
Thumbnail Image

Date

2012-06-21T19:50:18Z

Authors

Campaigne, Wesley

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

There is significant interest in the synthesis of discrete-state random fields, particularly those possessing structure over a wide range of scales. However, given a model on some finest, pixellated scale, it is computationally very difficult to synthesize both large and small-scale structures, motivating research into hierarchical methods. This thesis proposes a frozen-state approach to hierarchical modelling, in which simulated annealing is performed on each scale, constrained by the state estimates at the parent scale. The approach leads significant advantages in both modelling flexibility and computational complexity. In particular, a complex structure can be realized with very simple, local, scale-dependent models, and by constraining the domain to be annealed at finer scales to only the uncertain portions of coarser scales, the approach leads to huge improvements in computational complexity. Results are shown for synthesis problems in porous media.

Description

Keywords

simulated annealing, image synthesis, random fields

LC Subject Headings

Citation