Biologically Plausible Cortical Hierarchical-Classifier Circuit Extensions in Spiking Neurons

dc.contributor.advisorEliasmith, Chris
dc.contributor.authorSuma, Peter
dc.date.accessioned2018-01-09T15:02:32Z
dc.date.available2018-01-09T15:02:32Z
dc.date.issued2018-01-09
dc.date.submitted2018-01-05
dc.description.abstractHierarchical categorization inter-leaved with sequence recognition of incoming stimuli in the mammalian brain is theorized to be performed by circuits composed of the thalamus and the six-layer cortex. Using these circuits, the cortex is thought to learn a ‘brain grammar’ composed of recursive sequences of categories. A thalamo-cortical, hierarchical classification and sequence learning “Core” circuit implemented as a linear matrix simulation and was published by Rodriguez, Whitson & Granger in 2004. In the brain, these functions are implemented by cortical and thalamic circuits composed of recurrently-connected, spiking neurons. The Neural Engineering Framework (NEF) (Eliasmith & Anderson, 2003) allows for the construction of large-scale biologically plausible neural networks. Existing NEF models of the basal-ganglia and the thalamus exist but to the best of our knowledge there does not exist an integrated, spiking-neuron, cortical-thalamic-Core network model. We construct a more biologically-plausible version of the hierarchical-classification function of the Core circuit using leaky-integrate-and-fire neurons which performs progressive visual classification of static image sequences relying on the neural activity levels to trigger the progressive classification of the stimulus. We proceed by implementing a recurrent NEF model of the cortical-thalamic Core circuit and then test the resulting model on the hierarchical categorization of images.en
dc.identifier.urihttp://hdl.handle.net/10012/12821
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectcomputational neuroscienceen
dc.subjectneural engineeringen
dc.subjecttheoretical neuroscienceen
dc.titleBiologically Plausible Cortical Hierarchical-Classifier Circuit Extensions in Spiking Neuronsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorEliasmith, Chris
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Suma_Peter.pdf
Size:
6.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: