UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Forecasting northern polar stratospheric variability using a hierarchy of statistical models

dc.contributor.authorMinokhin, Ivan
dc.date.accessioned2015-10-02T18:54:11Z
dc.date.available2015-10-02T18:54:11Z
dc.date.issued2015-10-02
dc.date.submitted2015
dc.description.abstractThe northern polar stratosphere plays an important role in modulating the wintertime near-surface temperature conditions in midlatitudes. Forecasting northern polar stratospheric variability will have the potential to extend the winter weather forecasts in midlatitudes. As such, this research seeks to explore a novel approach of forecasting short-term northern polar stratospheric variability using a hierarchy of linear and non-linear statistical models. In addition to El NiƱo Southern Oscillation, the Quasi-biennial Oscillation, and the 11-year solar cycle indices, this research uses the upward flux of wave activity from the troposphere into the stratosphere as a predictor for modeling and forecasting northern polar stratospheric temperature and geopotential height anomalies. The upward flux of wave activity entering the stratosphere is the primary source of intraseasonal variability in the wintertime stratospheric polar vortex. Multiple linear regression and machine learning models were trained over the 1980-2005 time period, and the 10-day and 20-day northern polar stratospheric temperature and geopotential height forecasts were generated over the 2005-2011 time period. The importance of each predictor for modeling northern polar stratospheric variability was assessed using a permutation-based method. The study has found that the use of the meridional wave heat flux predictors improves the accuracy of short-term northern polar stratospheric geopotential height forecasts as demonstrated by the correlation coefficient of 0.48 over the 2005-2011 time period. In contrast to previous studies, multiple linear regression shows better predictive performance than the machine learning models over the 2005-2011 time period. A better predictive performance of multiple linear regression in comparison to machine learning models is due to a much higher contribution of the upward flux of wave activity than other predictors to forecast skill.en
dc.identifier.urihttp://hdl.handle.net/10012/9789
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterloo
dc.subjectnorthern polar stratospheric variabilityen
dc.subjectsudden stratospheric warmingen
dc.subjectplanetary wavesen
dc.subjectmeridional wave heat fluxen
dc.subjectmachine learningen
dc.subject.programGeographyen
dc.titleForecasting northern polar stratospheric variability using a hierarchy of statistical modelsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentGeographyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Minokhin_Ivan.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: