Minimum Shared-Power Edge Cut

dc.contributor.authorJain, Kshitij
dc.date.accessioned2018-08-24T15:30:43Z
dc.date.available2018-08-24T15:30:43Z
dc.date.issued2018-08-24
dc.date.submitted2018-08-01
dc.description.abstractWe introduce a problem called the Minimum Shared-Power Edge Cut (MSPEC). The input to the problem is an undirected edge-weighted graph with distinguished vertices s and t, and the goal is to find an s-t cut by assigning "powers" at the vertices and removing an edge if the sum of the powers at its endpoints is at least its weight. The objective is to minimize the sum of the assigned powers. MSPEC is a graph generalization of a barrier coverage problem in a wireless sensor network: given a set of unit disks with centers in a rectangle, what is the minimum total amount by which we must shrink the disks to permit an intruder to cross the rectangle undetected, i.e. without entering any disc. This is a more sophisticated measure of barrier coverage than the minimum number of disks whose removal breaks the barrier. We develop a fully polynomial time approximation scheme (FPTAS) for MSPEC. We give polynomial time algorithms for the special cases where the edge weights are uniform, or the power values are restricted to a bounded set. Although MSPEC is related to network flow and matching problems, its computational complexity (in P or NP-hard) remains open.en
dc.identifier.urihttp://hdl.handle.net/10012/13664
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectAlgorithmsen
dc.subjectComputational Geometryen
dc.subjectApproximation Algorithmen
dc.titleMinimum Shared-Power Edge Cuten
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorLubiw, Anna
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jain_Kshitij.pdf
Size:
677.19 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: