UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Succinct and Compact Data Structures for Intersection Graphs

dc.contributor.authorWu, Kaiyu
dc.date.accessioned2023-08-14T20:05:02Z
dc.date.available2023-08-14T20:05:02Z
dc.date.issued2023-08-14
dc.date.submitted2023-08-09
dc.description.abstractThis thesis designs space efficient data structures for several classes of intersection graphs, including interval graphs, path graphs and chordal graphs. Our goal is to support navigational operations such as adjacent and neighbourhood and distance operations such as distance efficiently while occupying optimal space, or a constant factor of the optimal space. Using our techniques, we first resolve an open problem with regards to succinctly representing ordinal trees that is able to convert between the index of a node in a depth-first traversal (i.e. pre-order) and in a breadth-first traversal (i.e. level-order) of the tree. Using this, we are able to augment previous succinct data structures for interval graphs with the $\GDistance$ operation. We also study several variations of the data structure problem in interval graphs: beer interval graphs and dynamic interval graphs. In beer interval graphs, we are given that some vertices of the graph are beer nodes (representing beer stores) and we consider only those paths that pass through at least one of these beer nodes. We give data structure results and prove space lower bounds for these graphs. We study dynamic interval graphs under several well known dynamic models such as incremental or offline, and we give data structures for each of these models. Finally we consider path graphs where we improve on previous works by exploiting orthogonal range reporting data structures. For optimal space representations, we improve the run time of the queries, while for non-optimal space representations (but optimal query times), we reduce the space needed.en
dc.identifier.urihttp://hdl.handle.net/10012/19686
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleSuccinct and Compact Data Structures for Intersection Graphsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorMunro, J. Ian
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wu_Kaiyu.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: