A generalization of Meshulam's theorem on subsets of finite abelian groups with no 3-term arithmetic progression

dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorSpencer, Craig V.
dc.date.accessioned2023-10-03T15:10:47Z
dc.date.available2023-10-03T15:10:47Z
dc.date.issued2009-01-31
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Designs, Codes and Cryptography. The final authenticated version is available online at: https://doi.org/10.1007/s10623-009-9268-0en
dc.description.abstractLet r1, . . . , rs be non-zero integers satisfying r1 + · · · + rs = 0. Let G Z/k1Z⊕· · ·⊕Z/knZ be a finite abelian group with ki |ki−1(2 ≤ i ≤ n), and suppose that (ri , k1) = 1(1 ≤ i ≤ s). Let Dr(G) denote the maximal cardinality of a set A ⊆ G which contains no non-trivial solution of r1x1+· · · +rs xs = 0 with xi ∈ A(1 ≤ i ≤ s).We prove that Dr(G) |G|/ns−2. We also apply this result to study problems in finite projective spaces.en
dc.identifier.urihttps://doi.org/10.1007/s10623-009-9268-0
dc.identifier.urihttp://hdl.handle.net/10012/19999
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesDesigns, Codes and Cryptography;52
dc.subjectRoth's theoremen
dc.subjectfinite abelian groupsen
dc.subjectcharacter sumsen
dc.titleA generalization of Meshulam's theorem on subsets of finite abelian groups with no 3-term arithmetic progressionen
dc.typeArticleen
dcterms.bibliographicCitationLiu, Y.-R., & Spencer, C. V. (2009). A generalization of Meshulam’s theorem on subsets of finite Abelian groups with no 3-term arithmetic progression. Designs, Codes and Cryptography, 52(1), 83–91. https://doi.org/10.1007/s10623-009-9268-0en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009-meshulam.pdf
Size:
299.46 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: