Incorporating Biologically Realistic Neuron Models into the NEF

dc.contributor.authorDuggins, Peter
dc.date.accessioned2017-09-18T15:15:15Z
dc.date.available2017-09-18T15:15:15Z
dc.date.issued2017-09-18
dc.date.submitted2017-08-31
dc.description.abstractTheoretical neuroscience is fundamentally concerned with the relationship between biological mechanisms, information processing, and cognitive abilities, yet current models often lack either biophysical realism or cognitive functionality. This thesis aims to partially fill this gap by incorporating geometrically and electrophisologically accurate models of individual neurons into the Neural Engineering Framework (NEF). After discussing the relationship between biologically complex neurons and the core principles/assumptions of the NEF, a neural model of working memory is introduced to demonstrate the NEF's existing capacity to capture biological and cognitive features. This model successfully performs the delayed response task and provides a medium for simulating mental disorders (ADHD) and its pharmacological treatments. Two methods of integrating more biologically sophisticated NEURON models into the NEF are subsequently explored and their ability to implement networks of varying complexity are assessed: the trained synaptic weights do realize the core NEF principles, though several errors remain unresolved. Returning to the working memory model, it is shown that bioneurons can perform the requisite computations in context, and that simulating the biophysical effects of pharmacological compounds produces results consistent with electrophysiological and behavioral data from monkeys.en
dc.identifier.urihttp://hdl.handle.net/10012/12393
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleIncorporating Biologically Realistic Neuron Models into the NEFen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorEliasmith, Chris
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Duggins_Peter.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: