Self-discharge of Rechargeable Hybrid Aqueous Battery

dc.contributor.authorKonarov, Aishuak
dc.date.accessioned2014-05-12T18:02:26Z
dc.date.available2014-05-12T18:02:26Z
dc.date.issued2014-05-12
dc.date.submitted2014-05
dc.description.abstractThis thesis studies the self-discharge performance of recently developed rechargeable hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown through a variety of electrochemical and ex-situ analytical techniques that many parts of the composite cathode play important roles on the self-discharge of the battery. It was determined that the current collector must be passive towards corrosion, and polyethylene was identified as the best option for this application. The effect of amount and type of conductive agent was also investigated, with low surface area carbonaceous material giving best performances. It was also shown that the state of charge has strong effects on the extension of self-discharge. More importantly, this study shows that the self-discharge mechanism in the ReHAB system involves the cathode active material and contains a reversible and an irreversible part. The reversible portion is predominant and is due to lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution into the electrolyte, which drives the Li+ ions out of the solution. The irreversible portion of the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the presence of the acidic electrolyte, and is much less extensive than the reversible process.en
dc.identifier.urihttp://hdl.handle.net/10012/8437
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectli-ion batteriesen
dc.subjectrehaben
dc.subjectself-dischargeen
dc.subject.programChemical Engineeringen
dc.titleSelf-discharge of Rechargeable Hybrid Aqueous Batteryen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentChemical Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Konarov_Aishuak.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: