Horospherical geometry: combinatorial algebraic stacks and approximating rational points

dc.contributor.authorMonahan, Sean
dc.date.accessioned2024-07-17T20:10:12Z
dc.date.available2024-07-17T20:10:12Z
dc.date.issued2024-07-17
dc.date.submitted2024-07-15
dc.description.abstractThe purpose of this thesis is to explore and develop several aspects of the theory of horospherical geometry. Horospherical varieties are equipped with the action of a reductive algebraic group such that there is an open orbit whose points are stabilized by maximal unipotent subgroups. This includes the well-known classes of toric varieties and flag varieties. Using this orbit structure and representation-theoretic condition on the stabilizer, one can classify horospherical varieties using combinatorial objects called coloured fans. We give an overview of the main features of this classification through a new, accessible notational framework. There are two main research themes in this thesis. The first is the development of a combinatorial theory for horospherical stacks, vastly generalizing that for horospherical varieties. We classify horospherical stacks using combinatorial objects called stacky coloured fans, extending the theory of coloured fans. As part of this classification, we describe the morphisms of horospherical stacks in terms of maps between the stacky coloured fans, we completely describe the good moduli space of a horospherical stack, and we introduce a special, hands-on class of horospherical stacks called coloured fantastacks. The second major theme is using horospherical varieties to probe a conjecture in arithmetic geometry. In 2007, McKinnon conjectured that, for a given point on a projective variety, there is a sequence, lying on a curve, which best approximates this point. We verify a version of this conjecture for horospherical varieties, contingent on Vojta’s Main Conjecture, which says that there is a sequence, lying on a curve, which approximates the given point better than any Zariski dense sequence.en
dc.identifier.urihttp://hdl.handle.net/10012/20730
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectalgebraic geometryen
dc.subjecthorosphericalen
dc.subjectalgebraic stacksen
dc.subjectrational approximationen
dc.subjectcombinatoricsen
dc.titleHorospherical geometry: combinatorial algebraic stacks and approximating rational pointsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorSatriano, Matthew
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Monahan_Sean.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: