Scalable Context-Sensitive Pointer Analysis for LLVM

Loading...
Thumbnail Image

Date

2019-08-13

Authors

Kuderski, Jakub

Advisor

Arie, Gurfinkel

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Pointer analysis is indispensable for effectively verifying heap-manipulating programs. Even though it has been studied extensively, there are no publicly available pointer analyses for low-level languages that are moderately precise while scalable to large real-world programs. In this thesis, we show that existing context-sensitive unification-based pointer analyses suffer from the problem of oversharing – propagating too many abstract objects across the analysis of different procedures, which prevents them from scaling to large programs. We present a new pointer analysis for LLVM, called TeaDsa, with such an oversharing significantly reduced. We show how to further improve precision and speed of TeaDsa with extra contextual information, such as flow-sensitivity at call- and return-sites, and type information about memory accesses. We evaluate TeaDsa on the verification problem of detecting unsafe memory accesses and compare it against two state-of-the-art pointer analyses: SVF and SeaDsa. We show that TeaDsa is one order of magnitude faster than either SVF or SeaDsa, strictly more precise than SeaDsa, and, surprisingly, sometimes more precise than SVF.

Description

Keywords

pointer analysis, alias analysis, LLVM, program analysis, program verification, static analysis

LC Subject Headings

Citation