A generalization of Roth's theorem in function fields

dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorSpencer, Craig V.
dc.date.accessioned2023-10-03T15:11:21Z
dc.date.available2023-10-03T15:11:21Z
dc.date.issued2009-11
dc.descriptionElectronic version of an article published as LIU, Y.-R., & SPENCER, C. V. (2009). A generalization of Roth’s theorem in function fields. International Journal of Number Theory, 05(07), 1149–1154. https://doi.org/10.1142/s1793042109002602 © 2009. World Scientific Publishing Company. https://www.worldscientific.com/en
dc.description.abstractLet 𝔽q[t] denote the polynomial ring over the finite field 𝔽q, and let formula denote the subset of 𝔽q[t] containing all polynomials of degree strictly less than N. For non-zero elements r1, …, rs of 𝔽q satisfying r1 + ⋯ + rs = 0, let formula denote the maximal cardinality of a set formula which contains no non-trivial solution of r1x1 + ⋯ + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). We prove that formula.en
dc.identifier.urihttps://doi.org/10.1142/S1793042109002602
dc.identifier.urihttp://hdl.handle.net/10012/20000
dc.language.isoenen
dc.publisherWorld Scientific Publishingen
dc.relation.ispartofseriesInternational Journal of Number Theory 5(7);
dc.titleA generalization of Roth's theorem in function fieldsen
dc.typeArticleen
dcterms.bibliographicCitationLIU, Y.-R., & SPENCER, C. V. (2009). A generalization of Roth’s theorem in function fields. International Journal of Number Theory, 05(07), 1149–1154. https://doi.org/10.1142/s1793042109002602en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009-roth-function-fields.pdf
Size:
279.09 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: