A generalization of Roth's theorem in function fields
| dc.contributor.author | Liu, Yu-Ru | |
| dc.contributor.author | Spencer, Craig V. | |
| dc.date.accessioned | 2023-10-03T15:11:21Z | |
| dc.date.available | 2023-10-03T15:11:21Z | |
| dc.date.issued | 2009-11 | |
| dc.description | Electronic version of an article published as LIU, Y.-R., & SPENCER, C. V. (2009). A generalization of Roth’s theorem in function fields. International Journal of Number Theory, 05(07), 1149–1154. https://doi.org/10.1142/s1793042109002602 © 2009. World Scientific Publishing Company. https://www.worldscientific.com/ | en |
| dc.description.abstract | Let 𝔽q[t] denote the polynomial ring over the finite field 𝔽q, and let formula denote the subset of 𝔽q[t] containing all polynomials of degree strictly less than N. For non-zero elements r1, …, rs of 𝔽q satisfying r1 + ⋯ + rs = 0, let formula denote the maximal cardinality of a set formula which contains no non-trivial solution of r1x1 + ⋯ + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). We prove that formula. | en |
| dc.identifier.uri | https://doi.org/10.1142/S1793042109002602 | |
| dc.identifier.uri | http://hdl.handle.net/10012/20000 | |
| dc.language.iso | en | en |
| dc.publisher | World Scientific Publishing | en |
| dc.relation.ispartofseries | International Journal of Number Theory 5(7); | |
| dc.title | A generalization of Roth's theorem in function fields | en |
| dc.type | Article | en |
| dcterms.bibliographicCitation | LIU, Y.-R., & SPENCER, C. V. (2009). A generalization of Roth’s theorem in function fields. International Journal of Number Theory, 05(07), 1149–1154. https://doi.org/10.1142/s1793042109002602 | en |
| uws.contributor.affiliation1 | Faculty of Mathematics | en |
| uws.contributor.affiliation2 | Pure Mathematics | en |
| uws.peerReviewStatus | Reviewed | en |
| uws.scholarLevel | Faculty | en |
| uws.typeOfResource | Text | en |