The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Retinotopic Preservation in Deep Belief Network Visual Learning

Loading...
Thumbnail Image

Authors

Lam, Michael

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

One of the foremost characteristics of the mammalian visual system is the retinotopic mapping observed in the low-level visual processing centres; the spatial pattern of activation in the lateral geniculate nucleus and primary visual cortex corresponds topologically to the pattern of light falling on the retina. Various vision systems have been developed that take advantage of structured input such as retinotopy, however these systems are often not biologically plausible. Using a parsimonious approach for implementing retinotopy, one that is based on the biology of our visual pathway, we run simulations of visual learning using a deep belief network (DBN). Experiments show that we can successfully produce receptive fields and activation maps typical of the LGN and visual cortex respectively. These results may indicate a possible avenue of exploration into discovering the workings of the early visual system (and possibly more) on a neuronal level.

Description

LC Subject Headings

Citation