State Estimation in Power Distribution Systems

dc.contributor.advisorRosenberg, Catherine
dc.contributor.authorCarquex, Côme
dc.date.accessioned2017-12-19T15:43:33Z
dc.date.available2017-12-19T15:43:33Z
dc.date.issued2017-12-19
dc.date.submitted2017-12-08
dc.description.abstractState estimation in power distribution systems is a key component for increased reliability and optimal system performance. Well understood in transmission systems, state estimation is now an area of active research in distribution networks. While several snapshot-based approaches have been used to solve this problem, few solutions have been proposed in a dynamic framework. In this thesis, a Past-Aware State Estimation (PASE) method is proposed for distribution systems that takes previous estimates into account to improve the accuracy of the current one, using an Ensemble Kalman Filter. Fewer phasor measurements units (PMU) are needed to achieve the same estimation error target than snapshot-based methods. Contrary to current methods, the proposed solution does not embed power flow equations into the estimator. A theoretical formulation is presented to compute a priori the advantages of the proposed method vis-a-vis the state-of-the-art. The proposed approach is validated considering the 33-bus distribution system and using power consumption traces from real households. Engineering insights are presented highlighting the major trade-offs in the choice of decision variables (number of PMUs, PMU accuracy, estimation time-step - i.e. elapsed time between two consecutive estimations) for the LDC: using a smaller time-step allows the LDC to relax the requirements on the PMU quality and their number.en
dc.identifier.urihttp://hdl.handle.net/10012/12747
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectDistribution systemen
dc.subjectDistribution system state estimationen
dc.subjectEnsemble Kalman filteren
dc.subjectPhasor measurement uniten
dc.subjectState Estimationen
dc.titleState Estimation in Power Distribution Systemsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorRosenberg, Catherine
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carquex_Come.pdf
Size:
499.31 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: