On the Representation Theory of Semisimple Lie Groups

dc.contributor.authorAl-Faisal, Faisal
dc.date.accessioned2010-08-30T20:45:26Z
dc.date.available2010-08-30T20:45:26Z
dc.date.issued2010-08-30T20:45:26Z
dc.date.submitted2010
dc.description.abstractThis thesis is an expository account of three central theorems in the representation theory of semisimple Lie groups, namely the theorems of Borel-Weil-Bott, Casselman-Osborne and Kostant. The first of these realizes all the irreducible holomorphic representations of a complex semisimple Lie group G in the cohomology of certain sheaves of equivariant line bundles over the flag variety of G. The latter two theorems describe the Lie algebra cohomology of a maximal nilpotent subalgebra of Lie(G) with coefficients in an irreducible Lie(G)-module. Applications to geometry and representation theory are given. Also included is a brief overview of Schmid's far-reaching generalization of the Borel--Weil--Bott theorem to the setting of unitary representations of real semisimple Lie groups on (possibly infinite-dimensional) Hilbert spaces.en
dc.identifier.urihttp://hdl.handle.net/10012/5421
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectLie groupsen
dc.subjectrepresentation theoryen
dc.subjectgeometryen
dc.subject.programPure Mathematicsen
dc.titleOn the Representation Theory of Semisimple Lie Groupsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alfaisal_thesis.pdf
Size:
694.85 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
259 B
Format:
Item-specific license agreed upon to submission
Description: