UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Smartphone-enabled Biotelemetric System For a Smart Contact Lens

dc.contributor.authorChen, Luyao
dc.date.accessioned2017-04-27T16:06:24Z
dc.date.available2017-04-27T16:06:24Z
dc.date.issued2017-04-27
dc.date.submitted2017-04
dc.description.abstractDiabetes describes a disordered metabolic state with an overabundance of glucose in the bloodstream, due to insu cient production or utilization of insulin to allow tissue cells from consuming glucose. People with unmanaged diabetes could lead to many serious complications such as heart disease, stroke, coma, kidney failure, blindness, amputation, and premature death. Diabetes can be managed by monitoring the blood glucose level, and control the glucose level by taking insulin, and exercising a carefully planned lifestyle with appropriate diet and physical activities. An elegant solution for glucose monitoring is the integration of electrochemical-based glucose sensor and microelectronics within a contact lens, namely a smart contact lens, which can measure the tear glucose in the eye, and correlate it to blood glucose. Currently, there is no functional smart contact lens devices for glucose detection in the market. This thesis focuses on providing proof of concept prototypes for implementing energy harvesting and wireless data transmission on a smart contact lens. An all-in-one solution is proposed to harvest energy from a smartphone, and use the same smartphone to support glucose data extraction by backscattering. The appropriate prototype architectures are justi ed based on a system speci cation estimated from related works. The prototypes are designed in simulation, and then fabricated on PCBs using o -the-shelf components and equipment. Measurements are conducted on the prototypes to evaluate their performance against the initial assessment of requirements from related works.en
dc.identifier.urihttp://hdl.handle.net/10012/11773
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectbiomedicalen
dc.subjectcontact lensen
dc.subjectbackscatteringen
dc.subjectwireless telemetryen
dc.subjectenergy harvestingen
dc.subjectRFen
dc.titleSmartphone-enabled Biotelemetric System For a Smart Contact Lensen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorSafavi-Naeini, Safieddin
uws.contributor.advisorShaker, George
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chen_Luyao.pdf
Size:
19.1 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: