The evolutionary and ecological factors that shape ectoparasite populations and communities at multiple scales
dc.contributor.author | Sauk, Alexandra | |
dc.date.accessioned | 2024-11-12T20:21:48Z | |
dc.date.available | 2024-11-12T20:21:48Z | |
dc.date.issued | 2024-11-12 | |
dc.date.submitted | 2024-10-09 | |
dc.description.abstract | Although parasites are one of the most prolific and diverse consumer groups on the planet, they are often excluded from biodiversity surveys as they are difficult to detect and identify. This deficit limits our understanding of host-parasite relationships and parasite diversity. The vast diversity of host-parasite relationships means that many ecological and evolutionary forces may be at play, shaping the evolution of host and parasite in different ways and varying between species pairs. Bats and their ectoparasites provide a unique system to study the factors influencing parasite populations and communities. The different ecological niches and social behaviours of bats provide variation in the ectoparasites they encounter, and the selective forces experienced by the ectoparasites. I hypothesised that certain attributes of ectoparasite infections (e.g., ectoparasite diversity and infection level) are influenced by the life history traits of both host and ectoparasite and be the environmental restrictions of individual ectoparasite species. Using a collection of ectoparasites passively collected from bats throughout Atlantic Canada between 1999 and 2017, I quantified the ectoparasite communities of two bat species, Myotis lucifugus and M. septentrionalis, and used model-based inferences to assess the differences in infection of their two most common ectoparasites, the mite Spinturnix americanus and the flea Myodopsylla insignis. I found that both bat species had similar ectoparasite communities while S. americanus and M. insignis showed opposing trends in presence and abundance between the two bat species, in keeping with their different life history strategies. I also used a subset of this collection to compare how life history traits and host-parasite dynamics influence the genetic structure and biogeography of co-infecting ectoparasites. I found limited genetic structure with M. insignis exhibiting some isolation by distance between Labrador and Nova Scotia and S. americanus exhibiting regional differentiation between the island of Newfoundland and the mainland. I also provide a synthesis of the currently described bat ectoparasites in North America and an analysis of how host characteristics and environmental factors influence ectoparasite richness and geographic distribution. I found that estimated ectoparasite richness varies widely between host species but is influenced by sampling effort. Bat ectoparasite diversity appears consistent with the predictions of the latitudinal diversity hypothesis with a 3.4% decrease in species richness for every degree increase in latitude. Overall, my findings add to the evidence that ectoparasite populations and communities are shaped by life history traits of the host and ectoparasite. I suggest multidisciplinary collaborations between bat biologists, parasitologists, and taxonomists are necessary to collect ectoparasites and catalogue bat-ectoparasite associations to better understand the ecological and evolutionary forces that shape these communities and to better be able to conserve them in the face of ongoing threats from climate change and landscape changes. | |
dc.identifier.uri | https://hdl.handle.net/10012/21179 | |
dc.language.iso | en | |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.subject | ectoparasite | |
dc.subject | chiroptera | |
dc.subject | parasite ecology | |
dc.subject | population genetics | |
dc.subject | little brown myotis | |
dc.subject | northern myotis | |
dc.subject | North America | |
dc.subject | Atlantic Canada | |
dc.title | The evolutionary and ecological factors that shape ectoparasite populations and communities at multiple scales | |
dc.type | Doctoral Thesis | |
uws-etd.degree | Doctor of Philosophy | |
uws-etd.degree.department | Biology | |
uws-etd.degree.discipline | Biology | |
uws-etd.degree.grantor | University of Waterloo | en |
uws-etd.embargo.terms | 0 | |
uws.contributor.advisor | Broders, Hugh | |
uws.contributor.affiliation1 | Faculty of Science | |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |