Upscaling of Coupled Models with Topography-Driven Surface-Water/Groundwater Interactions

dc.contributor.authorSnowdon, Andrew
dc.date.accessioned2016-05-16T18:17:48Z
dc.date.available2016-05-16T18:17:48Z
dc.date.issued2016-05-16
dc.date.submitted2016-05-12
dc.description.abstractSince the 1950s, groundwater and surface water models have evolved to better represent complex hydrological and hydrogeological systems. Part of this evolution has been the coupling of surface and subsurface models to properly simulate the transfer of mass between the two systems. While generally robust for simulating phenomena at smaller scales, existing coupled and fully-integrated models are problematic for larger-scale operational use. Fine-scale models are often computationally prohibitive due to the vast amounts of computational data required and because surface and subsurface models are often not discretized the same spatially. Conversely, faster coarse-scale models incorrectly simulate groundwater-surface water exchange fluxes because they neglect the details of subgrid water exchange. The primary goal of this thesis is to develop and test a regional-scale coupled model that may be used in an operational context. The model has two unique features: (1) it uses a novel upscaling formulation for handling groundwater/surface water exchange fluxes and (2) it can operate using unstructured grids (e.g., surface water basin boundaries) as the basic level of discretization for surface water and groundwater systems. The proposed upscaling approach is developed using fine-resolution topography-driven groundwater flow models to generate relationships between vertical water fluxes and average groundwater head. The relationships are used, in coarse-scale models, to represent groundwater-surface water exchange fluxes. These are then implemented in a new groundwater model that is coupled with the surface water model Raven. Comparisons with Modflow and HydroGeosphere are conducted to determine the effectiveness of this new approach.en
dc.identifier.urihttp://hdl.handle.net/10012/10489
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectsurface wateren
dc.subjectgroundwateren
dc.subjectmodellingen
dc.subjectexchange fluxesen
dc.subjectupscalingen
dc.titleUpscaling of Coupled Models with Topography-Driven Surface-Water/Groundwater Interactionsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degree.disciplineCivil Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorCraig, James
uws.contributor.advisorCraig, James
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Snowdon_Andrew.pdf
Size:
10.03 MB
Format:
Adobe Portable Document Format
Description:
PhD Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: