Black Hole to White Hole Quantum Tunnelling

dc.contributor.authorClements, Kate Elizabeth Alexandra
dc.date.accessioned2019-08-26T19:05:39Z
dc.date.available2019-08-26T19:05:39Z
dc.date.issued2019-08-26
dc.date.submitted2019-08-21
dc.description.abstractIn this thesis, we explore the proposal that near the end of its lifetime, a Schwarzschild black hole will undergo a quantum transition into a 'white hole': an object which is precisely the time-reversal of the black hole. This transition takes the form of quantum tunnelling. In order to evaluate the tunnelling amplitude, we characterize the region where quantum gravity effects dominate as enclosed by intersecting hypersurfaces on which the trace of the extrinsic curvature is equal to zero. This allows us to recover the tunnelling amplitude as specified by the boost angle between the normals to these hypersurfaces. The long-term aim of this work is to find the complex solutions to the vacuum Einstein equations in the quantum gravity region, and thus provide a complete explanation for what happens to a black hole after it evaporates.en
dc.identifier.urihttp://hdl.handle.net/10012/14950
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleBlack Hole to White Hole Quantum Tunnellingen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorDupuis, Maite
uws.contributor.advisorGirelli, Florian
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clements_Kate.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: