Regularization Using a Parameterized Trust Region Subproblem
dc.contributor.author | Grodzevich, Oleg | en |
dc.date.accessioned | 2006-08-22T14:29:56Z | |
dc.date.available | 2006-08-22T14:29:56Z | |
dc.date.issued | 2004 | en |
dc.date.submitted | 2004 | en |
dc.description.abstract | We present a new method for regularization of ill-conditioned problems that extends the traditional trust-region approach. Ill-conditioned problems arise, for example, in image restoration or mathematical processing of medical data, and involve matrices that are very ill-conditioned. The method makes use of the L-curve and L-curve maximum curvature criterion as a strategy recently proposed to find a good regularization parameter. We describe the method and show its application to an image restoration problem. We also provide a MATLAB code for the algorithm. Finally, a comparison to the CGLS approach is given and analyzed, and future research directions are proposed. | en |
dc.format | application/pdf | en |
dc.format.extent | 653697 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/1159 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2004, Grodzevich, Oleg. All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | regularization | en |
dc.subject | ill-posed | en |
dc.subject | inverse imaging problem | en |
dc.subject | numerically hard | en |
dc.subject | robustness | en |
dc.subject | algorithms | en |
dc.subject | programming | en |
dc.subject | efficiency | en |
dc.subject | conjugate gradient | en |
dc.title | Regularization Using a Parameterized Trust Region Subproblem | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1