Impacts of seismic line restoration on CO2, CH4, and biomass

dc.contributor.authorSchmidt, Megan
dc.date.accessioned2021-10-21T13:03:10Z
dc.date.available2021-10-21T13:03:10Z
dc.date.issued2021-10-21
dc.date.submitted2021-10-06
dc.description.abstractOil and gas exploration has resulted in over 300,000 km of linear disturbances, known as seismic lines, throughout boreal peatlands across Canada. Sites are left with altered hydrologic and topographic conditions that prevent tree re-establishment. Restoration efforts have concentrated on tree recovery through mechanical mounding to re-create microtopography and support planted tree seedlings to block sightlines and deter predator use, but little is known about the impact of seismic line disturbance or restoration on peatland carbon cycling, vegetation, or biomass. This study looked at two mounding treatments: hummock transfer (HT), which transferred naturally formed hummocks from just off the seismic line onto the line, and inline mounding (IM), in which hummocks were formed by scooping peat from on the line and placing it nearby. We compared vegetation cover and composition, above- and belowground biomass, and carbon dioxide (CO2) and methane (CH4) fluxes on the treatments to untreated lines and natural reference areas in the first two years post-restoration. There were few significant differences in understory percent cover or biomass across treatments, but forb and graminoid cover increased, low shrub cover decreased, and bryophyte distribution across microforms differed on untreated seismic lines from natural reference areas. Both mounding treatments increased forb cover but reduced graminoid, shrub, and bryophyte cover from untreated and natural areas. Belowground root biomass did not significantly change between treatments, and we found that only IM significantly reduced understory biomass. The absence of trees and mid-story shrubs on all three seismic line treatments resulted in a loss of ~720 g m-2, and the loss of a yearly uptake of ~50 g C m-2 y-1. We found no significant differences in net ecosystem CO2 exchange, but untreated seismic lines were slightly more productive than natural reference areas and mounding treatments. Both restoration treatments increased ecosystem respiration, decreased net productivity by 6 – 21 g CO2 m-2 d-1, and created areas of increased CH4 emissions, including an increase in the contribution of ebullition, of up to 2000 mg CH4 m-2 d-1. Although further research on this site to assess the longer-term impacts of restoration, as well as application on other sites with varied conditions, is required to determine if these methods are effective, our study suggests that HT may provide the best option to improve the outcome of multiple ecosystem functions.en
dc.identifier.urihttp://hdl.handle.net/10012/17660
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectpeatlandsen
dc.subjectrestorationen
dc.subjectseismic linesen
dc.subjectCO2en
dc.subjectCH4en
dc.subjectbiomassen
dc.subjectgreenhouse gasesen
dc.subjectpeatland restorationen
dc.subject.lcshPeatland restorationen
dc.subject.lcshPeatlandsen
dc.subject.lcshCarbon dioxideen
dc.subject.lcshMethaneen
dc.subject.lcshBiomassen
dc.subject.lcshGreenhouse gasesen
dc.titleImpacts of seismic line restoration on CO2, CH4, and biomassen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentGeography and Environmental Managementen
uws-etd.degree.disciplineGeographyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorStrack, Maria
uws.contributor.advisorDavidson, Scott J.
uws.contributor.affiliation1Faculty of Environmenten
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schmidt_Megan.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: